2,834 research outputs found

    Atividade da rubisco e das enzimas de síntese e hidrólise de sacarose, associada à produtividade de látex, em clones de seringueira [Hevea brasiliensis (Willd ex. Adr. de Juss.) Muell.-Arg] cultivados em Lavras, MG.

    Get PDF
    Estudos já realizados sobre clones de seringueira cultivados no estado de Minas Gerais têm fornecido indícios que permitem supor a existência de uma possível associação entre a variabilidade fotossintética e a produção de látex. Contudo, ainda é escasso o conhecimento acerca da assimilação de CO2 e o transporte de carbono das folhas até a casca, onde a biossíntese de látex ocorre de forma mais intensa. Em todas as etapas desses metabolismos, as reações são reguladas por algumas enzimas-chave. Este trabalho propôsse a avaliar a atividade da Rubisco e das principais enzimas de síntese e hidrólise de sacarose, em plantas de um jardim clonal de seringueira pertencentes aos clones RRIM 600, GT 1 e FX 2261, e sua relação com o desempenho produtivo de plantas adultas e em franca produção. Os resultados sugeriram uma provável associação entre a atividade da Rubisco e das invertases (ácida e neutra) e o desempenho produtivo dos clones. Não houve evidências de tal associação, em relação à sacarose-fosfato sintase (SPS) e à sacarose sintase (SuSy), cujas atividades não diferiram entre os clones avaliados. A hidrólise de sacarose na casca foi exercida predominantemente pela ação da invertase ácida. Em proporções menores e equivalentes, essa atividade foi complementada pela SuSy e pela invertase neutra

    Breast asymmetry analysis employing tree-structured wavelet transform

    Get PDF
    Statistically distributed developmental asymmetries appearing in paired body structures such as breasts in women are usually related to unhealthy biological conditions. In particular, there is evidence that breast cancer patients show more breast dimensional asymmetries and larger breasts than age-matched healthy women. It was also recently reported the application of Gabor nonorthogonal wavelets filtering for analyzing asymmetries of the directional structures appearing in mammograms corresponding to healthy and breast cancer patients. In this paper the Tree-Structured Wavelet Transform, which uses orthogonal wavelet bases, is applied for the first time in order to quantify texture asymmetries between left- and right- mammograms in women. In order to assess the suitability of the method, it was applied to characterize breast asymmetries of mammograms corresponding to a small population of 63 healthy women with ages ranging between 30 and 70 years. The obtained results justify further improvements of this method and its application for correlating asymmetries and the predisposition to breast cancer.Eje: Aplicaciones biomédicasRed de Universidades con Carreras en Informática (RedUNCI

    Morphology of the tropopause layer and lower stratosphere above a tropical cyclone : a case study on cyclone Davina (1999)

    Get PDF
    During the APE-THESEO mission in the Indian Ocean the Myasishchev Design Bureau stratospheric research aircraft M55 Geophysica performed a flight over and within the inner core region of tropical cyclone Davina. Measurements of total water, water vapour, temperature, aerosol backscattering, ozone and tracers were made and are discussed here in comparison with the averages of those quantities acquired during the campaign time frame. Temperature anomalies in the tropical tropopause layer (TTL), warmer than average in the lower part and colder than average in the upper TTL were observed. Ozone was strongly reduced compared to its average value, and thick cirrus decks were present up to the cold point, sometimes topped by a layer of very dry air. Evidence for meridional transport of trace gases in the stratosphere above the cyclone was observed and perturbed water distribution in the TTL was documented. The paper discuss possible processes of dehydration induced by the cirrus forming above the cyclone, and change in the chemical tracer and water distribution in the lower stratosphere 400–430 K due to meridional transport from the mid-latitudes and link with Davina. Moreover it compares the data prior and after the cyclone passage to discuss its actual impact on the atmospheric chemistry and thermodynamics

    Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79° N, 12° E) and McMurdo (78° S, 167° E)

    No full text
    International audienceThe extent of springtime Arctic ozone loss does not reach Antarctic "ozone hole" dimensions because of the generally higher temperatures in the northern hemisphere vortex and consequent less polar stratospheric cloud (PSC) particle surface for heterogeneous chlorine activation. Yet, with increasing greenhouse gases stratospheric temperatures are expected to further decrease. To infer if present Antarctic PSC occurrence can be applied to predict future Arctic PSC occurrence, lidar observations from McMurdo station (78° S, 167° E) and Ny-Ålesund (79° N, 12° E) have been analysed for the 9 winters between 1995 (1995/1996) and 2003 (2003/2004). Although the statistics may not completely cover the overall hemispheric PSC occurrence, the observations are considered to represent the main synoptic cloud features as both stations are mostly situated in the centre or at the inner edge of the vortex. Since the focus is set on the occurrence frequency of solid and liquid particles, the analysis has been restricted to volcanic aerosol free conditions. In McMurdo, by far the largest part of PSC observations is associated with PSC type Ia. The observed constant background of NAT particles and their potential ability to cause denoxification and irreversible denitrification is presumably more important to Antarctic ozone chemistry than the scarcely observed PSC type II. Meanwhile in Ny-Ålesund, PSC type II has never been observed, while type Ia and Ib both occur in large fraction. Although they are also found solely, the majority of observations reveals solid and liquid particle layers in the same profile. For the Ny-Ålesund measurements, the frequent occurrence of liquid PSC particles yields major significance in terms of ozone chemistry, as their chlorine activation rates are more efficient. The relationship between temperature, PSC formation, and denitrification is nonlinear and the McMurdo and Ny-Ålesund PSC observations imply that for predicted stratospheric cooling it is not possible to directly apply current Antarctic PSC occurrence directly to the Arctic stratosphere. Future Arctic PSC occurrence, and thus ozone loss, will depend on the shape and barotropy of the vortex rather than on the minimum temperatures

    Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions

    No full text
    The formation of insoluble inclusions in the cytosol and nucleus is associated with impaired protein homeostasis and is a hallmark of several neurodegenerative diseases. Due to the absence of the autophagic machinery, nuclear protein aggregates require a solubilization step preceding degradation by the 26S proteasome. Using yeast, we identify a nuclear protein quality control pathway required for the clearance of protein aggregates. The nuclear J-domain protein Apj1 supports protein disaggregation together with Hsp70 but independent of the canonical disaggregase Hsp104. Disaggregation mediated by Apj1/Hsp70 promotes turnover rather than refolding. A loss of Apj1 activity uncouples disaggregation from proteasomal turnover, resulting in accumulation of toxic soluble protein species. Endogenous substrates of the Apj1/Hsp70 pathway include both nuclear and cytoplasmic proteins, which aggregate inside the nucleus upon proteotoxic stress. These findings demonstrate the coordinated activity of the Apj1/Hsp70 disaggregation system with the 26S proteasome in facilitating the clearance of toxic inclusions inside the nucleus

    Concomitant evaluation of cardiovascular and cerebrovascular controls via Geweke spectral causality to assess the propensity to postural syncope

    Get PDF
    The evaluation of propensity to postural syncope necessitates the concomitant characterization of the cardiovascular and cerebrovascular controls and a method capable of disentangling closed loop relationships and decomposing causal links in the frequency domain. We applied Geweke spectral causality (GSC) to assess cardiovascular control from heart period and systolic arterial pressure variability and cerebrovascular regulation from mean arterial pressure and mean cerebral blood velocity variability in 13 control subjects and 13 individuals prone to develop orthostatic syncope. Analysis was made at rest in supine position and during head-up tilt at 60°, well before observing presyncope signs. Two different linear model structures were compared, namely bivariate autoregressive and bivariate dynamic adjustment classes. We found that (i) GSC markers did not depend on the model structure; (ii) the concomitant assessment of cardiovascular and cerebrovascular controls was useful for a deeper comprehension of postural disturbances; (iii) orthostatic syncope appeared to be favored by the loss of a coordinated behavior between the baroreflex feedback and mechanical feedforward pathway in the frequency band typical of the baroreflex functioning during the postural challenge, and by a weak cerebral autoregulation as revealed by the increased strength of the pressure-to-flow link in the respiratory band. GSC applied to spontaneous cardiovascular and cerebrovascular oscillations is a promising tool for describing and monitoring disturbances associated with posture modification

    On the Different Abilities of Cross-Sample Entropy and K-Nearest-Neighbor Cross-Unpredictability in Assessing Dynamic Cardiorespiratory and Cerebrovascular Interactions

    Get PDF
    Nonlinear markers of coupling strength are often utilized to typify cardiorespiratory and cerebrovascular regulations. The computation of these indices requires techniques describing nonlinear interactions between respiration (R) and heart period (HP) and between mean arterial pressure (MAP) and mean cerebral blood velocity (MCBv). We compared two model-free methods for the assessment of dynamic HP–R and MCBv–MAP interactions, namely the cross-sample entropy (CSampEn) and k-nearest-neighbor cross-unpredictability (KNNCUP). Comparison was carried out first over simulations generated by linear and nonlinear unidirectional causal, bidirectional linear causal, and lag-zero linear noncausal models, and then over experimental data acquired from 19 subjects at supine rest during spontaneous breathing and controlled respiration at 10, 15, and 20 breaths minute^-1 as well as from 13 subjects at supine rest and during 60 head-up tilt. Linear markers were computed for comparison. We found that: (i) over simulations, CSampEn and KNNCUP exhibit different abilities in evaluating coupling strength; (ii) KNNCUP is more reliable than CSampEn when interactions occur according to a causal structure, while performances are similar in noncausal models; (iii) in healthy subjects, KNNCUP is more powerful in characterizing cardiorespiratory and cerebrovascular variability interactions than CSampEn and linear markers. We recommend KNNCUP for quantifying cardiorespiratory and cerebrovascular coupling

    Methodologies for selecting cassava with resistance to dry and black root rot under controlled conditions.

    Get PDF
    Cassava root rot diseases such as dry and black root rot are listed among the major threats, since its affect the main product (tuberous roots), causing a progressive decline in yield and affecting subsequent crop cycles, being the use of resistant varieties the most reliable control measure on field level. The objective of this study was to identify inoculation methods for the early evaluation of genotypes, considering the level of resistance to dry (DRR) and black (BRR) root rot diseases. Different methodologies and plant tissues were evaluated, based on the immersion of cassava tissues (roots and stem cuttings), soil infestation, and inoculation of detached tissues (leaves, tuberous roots and stem cuttings). The following parameters were evaluated for inoculations based on tissue immersion: disease index (ω); aerial part weight (g); fresh weight of the roots (g); and volume (cm3). For the inoculations on detached tissues, the percentage of lesioned area was determined. Immersion methods for roots and lesioned stems did not show typical symptoms of DRR and BRR during the two-month evaluation period. The soil infestation method did not differ from the stem immersion method as to the reduction of aerial part weight and the disease index, whereas both can be recommended for resistance selection trials. There was a positive correlation between the BRR and DRR data for the stem inoculation (r = 0.94, p = 0.001) and for DRR in the peel and root pulp (r = 0.73, p = 0.05). Therefore, the resistance within each tissue is apparently independent and should be compared with the behavior of the genotypes in the field

    Categorizing the Role of Respiration in Cardiovascular and Cerebrovascular Variability Interactions

    Get PDF
    Objective: Respiration disturbs cardiovascular and cerebrovascular controls but its role is not fully elucidated. Methods: Respiration can be classified as a confounder if its observation reduces the strength of the causal relationship from source to target. Respiration is a suppressor if the opposite situation holds. We prove that a confounding/suppression (C/S) test can be accomplished by evaluating the sign of net redundancy/synergy balance in the predictability framework based on multivariate autoregressive modelling. In addition, we suggest that, under the hypothesis of Gaussian processes, the C/S test can be given in the transfer entropy decomposition framework as well. Experimental protocols: We applied the C/S test to variability series of respiratory movements, heart period, systolic arterial pressure, mean arterial pressure, and mean cerebral blood flow recorded in 17 pathological individuals (age: 648 yrs; 17 males) before and after induction of propofol-based general anesthesia prior to coronary artery bypass grafting, and in 13 healthy subjects (age: 278 yrs; 5 males) at rest in supine position and during head-up tilt with a table inclination of 60. Results: Respiration behaved systematically as a confounder for cardiovascular and cerebrovascular controls. In addition, its role was affected by propofol-based general anesthesia but not by a postural stimulus of limited intensity. Conclusion: The C/S test can be fruitfully exploited to categorize the role of respiration over causal variability interactions. Significance: The application of the C/S test could favor the comprehension of the role of respiration in cardiovascular and cerebrovascular regulations
    corecore